direct product, p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C2×C23.38C23, C22.36C25, C24.479C23, C23.116C24, C42.540C23, C22.732- 1+4, C4⋊Q8⋊73C22, (Q8×C23)⋊9C2, (C2×C4).39C24, C2.15(D4×C23), C4⋊C4.280C23, C23.709(C2×D4), C4.171(C22×D4), (C22×C4).535D4, C22⋊C4.4C23, C22⋊Q8⋊72C22, (C2×D4).447C23, C4.4D4⋊63C22, (C2×Q8).421C23, (C22×Q8)⋊59C22, C22.49(C22×D4), C42⋊C2⋊87C22, C2.4(C2×2- 1+4), (C23×C4).582C22, (C2×C42).916C22, (C22×C4).1585C23, (C22×D4).585C22, C22.D4⋊31C22, (C2×C4⋊Q8)⋊46C2, (C2×C4).661(C2×D4), (C2×C22⋊Q8)⋊61C2, (C2×C4.4D4)⋊46C2, (C2×C42⋊C2)⋊54C2, (C2×C4⋊C4).699C22, (C22×C4○D4).27C2, (C2×C4○D4).321C22, (C2×C22.D4)⋊49C2, (C2×C22⋊C4).373C22, SmallGroup(128,2179)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C23.38C23
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=1, f2=g2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, ebe=bc=cb, bd=db, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, gfg-1=cf=fc, cg=gc, geg-1=de=ed, df=fd, dg=gd >
Subgroups: 1100 in 756 conjugacy classes, 436 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C24, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C22⋊Q8, C22.D4, C4.4D4, C4⋊Q8, C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C22×Q8, C22×Q8, C2×C4○D4, C2×C4○D4, C2×C42⋊C2, C2×C22⋊Q8, C2×C22.D4, C2×C4.4D4, C2×C4⋊Q8, C23.38C23, Q8×C23, C22×C4○D4, C2×C23.38C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, 2- 1+4, C25, C23.38C23, D4×C23, C2×2- 1+4, C2×C23.38C23
(1 49)(2 50)(3 51)(4 52)(5 20)(6 17)(7 18)(8 19)(9 55)(10 56)(11 53)(12 54)(13 63)(14 64)(15 61)(16 62)(21 59)(22 60)(23 57)(24 58)(25 43)(26 44)(27 41)(28 42)(29 35)(30 36)(31 33)(32 34)(37 48)(38 45)(39 46)(40 47)
(1 35)(2 36)(3 33)(4 34)(5 10)(6 11)(7 12)(8 9)(13 41)(14 42)(15 43)(16 44)(17 53)(18 54)(19 55)(20 56)(21 45)(22 46)(23 47)(24 48)(25 61)(26 62)(27 63)(28 64)(29 49)(30 50)(31 51)(32 52)(37 58)(38 59)(39 60)(40 57)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 19)(2 20)(3 17)(4 18)(5 50)(6 51)(7 52)(8 49)(9 29)(10 30)(11 31)(12 32)(13 40)(14 37)(15 38)(16 39)(21 25)(22 26)(23 27)(24 28)(33 53)(34 54)(35 55)(36 56)(41 57)(42 58)(43 59)(44 60)(45 61)(46 62)(47 63)(48 64)
(1 6)(2 5)(3 8)(4 7)(9 35)(10 34)(11 33)(12 36)(13 63)(14 62)(15 61)(16 64)(17 49)(18 52)(19 51)(20 50)(21 57)(22 60)(23 59)(24 58)(25 41)(26 44)(27 43)(28 42)(29 55)(30 54)(31 53)(32 56)(37 46)(38 45)(39 48)(40 47)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 41 3 43)(2 44 4 42)(5 22 7 24)(6 21 8 23)(9 47 11 45)(10 46 12 48)(13 33 15 35)(14 36 16 34)(17 59 19 57)(18 58 20 60)(25 49 27 51)(26 52 28 50)(29 63 31 61)(30 62 32 64)(37 56 39 54)(38 55 40 53)
G:=sub<Sym(64)| (1,49)(2,50)(3,51)(4,52)(5,20)(6,17)(7,18)(8,19)(9,55)(10,56)(11,53)(12,54)(13,63)(14,64)(15,61)(16,62)(21,59)(22,60)(23,57)(24,58)(25,43)(26,44)(27,41)(28,42)(29,35)(30,36)(31,33)(32,34)(37,48)(38,45)(39,46)(40,47), (1,35)(2,36)(3,33)(4,34)(5,10)(6,11)(7,12)(8,9)(13,41)(14,42)(15,43)(16,44)(17,53)(18,54)(19,55)(20,56)(21,45)(22,46)(23,47)(24,48)(25,61)(26,62)(27,63)(28,64)(29,49)(30,50)(31,51)(32,52)(37,58)(38,59)(39,60)(40,57), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,19)(2,20)(3,17)(4,18)(5,50)(6,51)(7,52)(8,49)(9,29)(10,30)(11,31)(12,32)(13,40)(14,37)(15,38)(16,39)(21,25)(22,26)(23,27)(24,28)(33,53)(34,54)(35,55)(36,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,6)(2,5)(3,8)(4,7)(9,35)(10,34)(11,33)(12,36)(13,63)(14,62)(15,61)(16,64)(17,49)(18,52)(19,51)(20,50)(21,57)(22,60)(23,59)(24,58)(25,41)(26,44)(27,43)(28,42)(29,55)(30,54)(31,53)(32,56)(37,46)(38,45)(39,48)(40,47), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,41,3,43)(2,44,4,42)(5,22,7,24)(6,21,8,23)(9,47,11,45)(10,46,12,48)(13,33,15,35)(14,36,16,34)(17,59,19,57)(18,58,20,60)(25,49,27,51)(26,52,28,50)(29,63,31,61)(30,62,32,64)(37,56,39,54)(38,55,40,53)>;
G:=Group( (1,49)(2,50)(3,51)(4,52)(5,20)(6,17)(7,18)(8,19)(9,55)(10,56)(11,53)(12,54)(13,63)(14,64)(15,61)(16,62)(21,59)(22,60)(23,57)(24,58)(25,43)(26,44)(27,41)(28,42)(29,35)(30,36)(31,33)(32,34)(37,48)(38,45)(39,46)(40,47), (1,35)(2,36)(3,33)(4,34)(5,10)(6,11)(7,12)(8,9)(13,41)(14,42)(15,43)(16,44)(17,53)(18,54)(19,55)(20,56)(21,45)(22,46)(23,47)(24,48)(25,61)(26,62)(27,63)(28,64)(29,49)(30,50)(31,51)(32,52)(37,58)(38,59)(39,60)(40,57), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,19)(2,20)(3,17)(4,18)(5,50)(6,51)(7,52)(8,49)(9,29)(10,30)(11,31)(12,32)(13,40)(14,37)(15,38)(16,39)(21,25)(22,26)(23,27)(24,28)(33,53)(34,54)(35,55)(36,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,6)(2,5)(3,8)(4,7)(9,35)(10,34)(11,33)(12,36)(13,63)(14,62)(15,61)(16,64)(17,49)(18,52)(19,51)(20,50)(21,57)(22,60)(23,59)(24,58)(25,41)(26,44)(27,43)(28,42)(29,55)(30,54)(31,53)(32,56)(37,46)(38,45)(39,48)(40,47), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,41,3,43)(2,44,4,42)(5,22,7,24)(6,21,8,23)(9,47,11,45)(10,46,12,48)(13,33,15,35)(14,36,16,34)(17,59,19,57)(18,58,20,60)(25,49,27,51)(26,52,28,50)(29,63,31,61)(30,62,32,64)(37,56,39,54)(38,55,40,53) );
G=PermutationGroup([[(1,49),(2,50),(3,51),(4,52),(5,20),(6,17),(7,18),(8,19),(9,55),(10,56),(11,53),(12,54),(13,63),(14,64),(15,61),(16,62),(21,59),(22,60),(23,57),(24,58),(25,43),(26,44),(27,41),(28,42),(29,35),(30,36),(31,33),(32,34),(37,48),(38,45),(39,46),(40,47)], [(1,35),(2,36),(3,33),(4,34),(5,10),(6,11),(7,12),(8,9),(13,41),(14,42),(15,43),(16,44),(17,53),(18,54),(19,55),(20,56),(21,45),(22,46),(23,47),(24,48),(25,61),(26,62),(27,63),(28,64),(29,49),(30,50),(31,51),(32,52),(37,58),(38,59),(39,60),(40,57)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,19),(2,20),(3,17),(4,18),(5,50),(6,51),(7,52),(8,49),(9,29),(10,30),(11,31),(12,32),(13,40),(14,37),(15,38),(16,39),(21,25),(22,26),(23,27),(24,28),(33,53),(34,54),(35,55),(36,56),(41,57),(42,58),(43,59),(44,60),(45,61),(46,62),(47,63),(48,64)], [(1,6),(2,5),(3,8),(4,7),(9,35),(10,34),(11,33),(12,36),(13,63),(14,62),(15,61),(16,64),(17,49),(18,52),(19,51),(20,50),(21,57),(22,60),(23,59),(24,58),(25,41),(26,44),(27,43),(28,42),(29,55),(30,54),(31,53),(32,56),(37,46),(38,45),(39,48),(40,47)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,41,3,43),(2,44,4,42),(5,22,7,24),(6,21,8,23),(9,47,11,45),(10,46,12,48),(13,33,15,35),(14,36,16,34),(17,59,19,57),(18,58,20,60),(25,49,27,51),(26,52,28,50),(29,63,31,61),(30,62,32,64),(37,56,39,54),(38,55,40,53)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 4A | ··· | 4H | 4I | ··· | 4AB |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | 2- 1+4 |
kernel | C2×C23.38C23 | C2×C42⋊C2 | C2×C22⋊Q8 | C2×C22.D4 | C2×C4.4D4 | C2×C4⋊Q8 | C23.38C23 | Q8×C23 | C22×C4○D4 | C22×C4 | C22 |
# reps | 1 | 1 | 4 | 4 | 2 | 2 | 16 | 1 | 1 | 8 | 4 |
Matrix representation of C2×C23.38C23 ►in GL8(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 0 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,4,0,3,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,3,0,1,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0],[0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,3,0,0,0,0,0,0,3,0,3] >;
C2×C23.38C23 in GAP, Magma, Sage, TeX
C_2\times C_2^3._{38}C_2^3
% in TeX
G:=Group("C2xC2^3.38C2^3");
// GroupNames label
G:=SmallGroup(128,2179);
// by ID
G=gap.SmallGroup(128,2179);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,232,1430,387,184,1123]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=1,f^2=g^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*b*e=b*c=c*b,b*d=d*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,g*f*g^-1=c*f=f*c,c*g=g*c,g*e*g^-1=d*e=e*d,d*f=f*d,d*g=g*d>;
// generators/relations